Farewell, Editors Emeriti; Welcome, New Editors


Autumn (or Spring for our readers in the Southern hemisphere) is a time of change, and things are changing as well for Bits of Quantum. Editorial duties on this blog are performed on a volunteer basis by PhD students (in what little remains of their free time), and this means that any editor’s tenure is inherently limited by his or hers PhD track. This is why, with some sadness, we announce the departure of James and Suzanne, who have handed in their editorial powers to finish up their doctoral track. They were great members of the team and we would like to thank them for the time they have spent making this blog an amazing place for quantum computing.

Luckily change also brings renewal and we are very happy to announce that Bits Of Quantum has two new editors: Guan and Anne-Marije. They have been unofficially part of the team for a while now and we figured it was high time to formalize their editor-ship.


GuanMy name is Guanzhong Wang (feel free to call me Guan when you meet me in or out of the lab) and I’m a PhD student in the group of Leo Kouwenhoven. I work on one of the more unusual approaches to building a quantum computer here in QuTech – using what’s called a topological qubit. I hope through our posts I’ll be able to convince you this is a truly challenging yet worthwhile endeavor that embodies both mathematical and engineering beauty. Happy reading!


Anne-MarijeHi! My name is Anne-Marije and I’m a PhD candidate in the Vandersypen lab, where we are able to catch and control single electrons for the purpose of quantum computation. I am absolutely fascinated by quantum mechanics and it is a great adventure to work with bits of quantum daily and stretch up the boundaries of what we know and can do nowadays. Also, I love speed skating, philosophy and hanging out with friends. Enjoy the blog!

And finally we have one more departure to announce. Last month Christian Dickel has acquired the title of Doctor and has subsequently left QuTech in search of a somewhat less rainy environment. As faithful readers will undoubtedly know, Chris was a prolific contributor to Bits of Quantum, writing many of our best-received articles. He was also very active behind the scenes, getting other people to write blog posts and generally caring a lot about the welfare of Bits of Quantum. Because of this we have decided to give Chris the position of Honorary Editor! Be sure to tune in for our next blogpost, which will be Chris’ final contribution to Bits of Quantum. 

To conclude this post, we would like to share with you the answers to some questions we asked James and Suzanne about their time contributing to the blog and pictures of them receiving our gifts. Hope you enjoy reading Bits of Quantum as much as they did editing!



It’s sad you’re leaving as an editor. What are your plans now?

I am finishing my PhD at the beginning of next year, and going to move on to a new position after that. I would like to stay in academia, so I am going to look for a postdoc position. As specialised as groups are in our research field this almost certainly means moving somewhere new. It will thus be quite an adventure: I have no idea yet where I’ll be next year!

What is your favourite blogpost?  

What I love about the blog posts is that there is such a large variety. We made a ‘difficulty level’ indicated by the number of Q’s such that you know what you are signing up for before reading. For example, if you’re down for something in-depth have a look at Jeremy Ribeiro’s “Quantum Teleportation Explained” (3 Q’s), or if you like something more intro-style I love “Hiding Schrodingers cat: a qubit of quantum error correction” (QQ) by Tom O’Brien. An important category are also the posts that give an insight in life at QuTech: they are 1Q difficulty, but nonetheless important fuel for the blog! One I like a lot is Sophie Hermans’ “A day in the life of a master student”.

Are you planning to keep on writing?

Of course! My next blog post is already on the schedule for a couple of weeks from now, so keep posted.

What is your best blog memory?  

What I liked a lot are the meetings with the editorial team: initially to concretise our idea for the blog and set it all up, and later to keep things going. Not to be missed was getting together for writing the Christmas post, and letting our creativity flow.

Do you have some nice ideas that can be incorporated in the QuTech blog?

Many ideas! We never had a video post yet, which would be a interesting variation. It would be cool to have a page with an overview of everyone who contributed to the blog post, to make the researchers behind the science visible. We could have a QuTech podcast, where researchers talk about the content of their work as well as the what it is like to do science. But mostly, the blog should keep doing what it’s doing: get good stories from the full diverse range of researchers and research topics that are part of QuTech.


It’s sad you’re leaving as an editor. What are your plans now?

My first priority is to finish my PhD! Being an editor has been a lot of fun, but does take up some time that can be spent doing research. After my PhD I hope to continue doing research in quantum computing, hopefully in part of the newly forming wedge that forms a bridge between academia and industry.

What is your favourite blogpost?  

My favourite blog post is the one by Hans Mooij. I also work on the field of superconducting qubits, and having a pedagogical post from one of the fathers of superconducting quantum circuits on the history of the field was particularly amazing. In particular the picture of the defence committee containing John Clarke, Seth Lloyd, Tony Leggett and Daniel Esteve was the most striking.

Are you planning to keep on writing?

I think that scientists have an obligation to explain their work to the general public – after all they do fund the majority of the work we do and they have a right to know why what we do is important, whether that be for practical applications or more fundamental reasons.

I have to say I enjoyed writing much more than I thought I would, but that it also takes a considerable amount of time to do well, so I would like to continue after I have graduated and have a little more time on my hands.

What did you like best?  

The best memory I have of the blog team is when we all attended march meeting together. It’s a unique experience, and very invigorating to be surrounded by so many intelligent driven scientists, and it was wonderful to be able to share that experience with the team and talk about what it meant for each of us to be there.


Dead or Alive: Can you be both?


by Jérémy Ribeiro

At the heart of Quantum Mechanics lies quantum superposition. This strange phenomenon is often described as the capacity of a quantum system to be in multiple incompatible states at the same time. The most famous example of this is Schrödinger’s cat, which would be both dead and alive at the same time. But how can this be? How can we humanly make sense of that apparent contradiction? Well… I think we cannot! More precisely, I think there is a problem of language in here. Exactly what a quantum scientist means by being “in superposition”, I think, is quite far from what the layman has in mind.

A simple analogy

To start explaining what a quantum scientist has in mind when he/she says that a state is in superposition I will use a simple analogy: Shapes.

What? How is that related to the topic?

You’ll see! How would you describe or draw a shape that is both a disk and a rectangle?

That does not make any sense! Maybe something like this:





Yeah you see, it does not make sense to you, and you struggle to draw anything because I said something that does not make sense. This is exactly what happens when someone says that Schrödinger’s cat is both dead and alive! It is not clear what he/she means, and stated like that it is non-sense. When a quantum scientist says that a physical system is in superposition of two states (dead and alive), he/she means that it is in a state that is neither the first (dead) nor the second (alive) but it is in another state that possesses some of the characteristics of both (dead and alive).

Hmm…This is quite hard to visualize for me. Don’t you have an example?

Yes! For the example of the shape it could look like this:







Oh I see!

This is a relatively good analogy. This shape is neither a rectangle nor a disk, however it has some of the properties of both. Moreover I like this analogy because in quantum mechanics you cannot “see” the quantum state the physical system is in. In other words, if someone gives you a system in a certain unknown state, you cannot learn the state. If you try to measure it, you will only see a “projection” of it…

A what?

A projection is somehow a shadow, like in the picture above. It is as if we could not see the object itself but only the shadows. And you see the shape of the shadows?

Oh! They are a rectangle and a disk!

Note that we are not obliged to project the light on the object in this manner, we could use another angle to project the light, and we would get other shadows:







It is the same in quantum mechanics: It would correspond to changing the measurement you perform on the system.

However there is a very important point that this analogy does not capture. In quantum mechanics, when we measure the system we disturb it. Therefore, in general, the state after measurement is not the same as the one before. On the contrary, the shape in the pictures does not change after we shine a light it on. Here is the limit of the analogy.

To go beyond this simple and limited analogy, we will have to learn the quantum language, which we will do…

Wait! That sounds terribly complicated!

Well, do you know what an arrow is?

Like in Robin Hood?


Yeah, well no. More like an arrow you can draw!

Like this?






Yes! You see, you already speak quantum!

I am quite skeptical…

Let’s start with the real thing. The quantum language of arrows.

The quantum language is formulated in term of arrows! More precisely, the state of a quantum system is represented by an arrow. The mathematical term for these arrows is “unitary vectors of a Hilbert space (usually of finite dimension)”.

You theorists are such Barbarians!

Well yeah… I mean… Whatever… Each of these words is important, but basically this “barbarian” expression means “arrow of length 1”. So in more precise terms, a quantum state is (represented by) an arrow of length 1. This length restriction is here because the state is related with probabilities – as we will see in a moment – and probabilities add up to 1.

To simplify I will only talk about two-level systems. These are the simplest quantum systems you can find. They correspond to systems that have at most two possible outcomes when measured. For example for the spin of an electron, when we measure it, we can only measure that the spin is up or down, nothing more. We call such systems “qubits” (short for quantum bits).

Instead of using “dead” or “alive”, “up” or “down”, I will use 0 and 1 by analogy to the values that can take a bit in computer science. To specify that I am talking about arrows I will write a state as follows: |name of the state>. For example |0\rangle is a state, |1\rangle is a state.

In this picture we see the state |0\rangle and |1\rangle and another state in between called V. Because the set of all states is the set of arrows of length 1, to every point of the blue circle (of radius 1) corresponds the ending of an arrow, and therefore each of these points corresponds to an arrow. The states |0\rangle and |1\rangle are orthogonal, i.e. they form a right angle. Having a right angle like this means, in the language of quantum mechanics, to be “incompatible”, while being in between two “incompatible” arrows is said to be in superposition of those arrows. To understand why we need to understand how quantum measurements work.

We first need to choose a measurement, that’s to say we need to choose what we want to measure. For example, if you wanted to “measure” a person, you need to decide whether you want to measure his/her height or his/her weight. In quantum mechanics the possible measurements are determined by the pairs of orthogonal vectors, in other words to choose a measurement we need to choose two arrows that form a right angle. We then say that we measure in the basis formed by these vectors. For example one measurement is characterized by the arrows |0\rangle and |1\rangle , so let’s describe in more details this particular measurement.

Let say that we want to measure the arrow |V\rangle that is between |0\rangle and |1\rangle (see image above). What we do is that we look at the projection of |V\rangle on the two arrow that represent the measurement…


Again, the projection is like a shadow, but let me draw it:

You see here we draw a green line parallel to the arrow |0\rangle from the tip of the arrow |V\rangle, and a red line parallel to the arrow |1\rangle from the tip of the arrow |V\rangle. This allows us to get two new but shorter arrows, the green and the red. We say that the green arrow is the projection of the arrow |V\rangle on the arrow |1\rangle , and the red arrow is the projection of |V\rangle on |0\rangle . It looks a bit like for the 3D object from the last section, where the arrow |V\rangle plays the role of the 3D object, the dashed lines are the rays of light, the projection are the shadows, and the basis of the measurement (here |0\rangle and |1\rangle ) are the walls.

One of the major characteristics of quantum mechanics is that the outcome of a measurement is random. What happens during the measurement is that the arrow |V\rangle will randomly become either the arrow |0\rangle or the arrow |1\rangle with probability given by the length of the projections (in fact the square of their length): The length of the red arrow determines the probability that the arrow |V\rangle becomes the arrow |0\rangle after the measurement, while the length of the green arrow determines the probability that the arrow |V\rangle becomes the arrow |1\rangle after the measurement. When the arrow |V\rangle becomes |0\rangle we get outcome 0, and when it becomes |1\rangle we get 1. You can also see the big difference with the shapes of the previous section, here after the measurement the state is not the same as before. When you get outcome 0, the state after measurement is the arrow |0\rangle. On the contrary if you project light on the weird 3D shape above, it does not suddenly become a circle or rectangle.

Hmm, that’s a lot to process… And why is it random?

It is true that this is a lot, but try to play with different arrows, and think about the analogy of the shadows. After a while you will get a good grasp on how to get the probability of getting outcome 0 or 1 out of a measurement. For the randomness the language of arrows does not tell us why, or how the projection process works.

Hmm, ok.
And what happens if I measure the arrow |0\rangle in the basis formed by the arrows |0\rangle and |1\rangle?

Imagine you rotate the arrow |V\rangle so that it becomes really close to the arrow |0\rangle. You see that the closer to the arrow |0\rangle the bigger the red arrow becomes. And when the arrow |V\rangle touches the arrow |0\rangle, then the red arrow becomes the arrow |0\rangle itself, and has therefore length 1. On the other the closer the arrow |V\rangle is to |0\rangle the smaller the green arrow is. When it touches the arrow |0\rangle the green arrow has length 0. This means that if you measure the arrow |0\rangle in the basis formed by the arrows |0\rangle and |1\rangle , then with probability 1 the arrow |0\rangle will stay |0\rangle and you’ll get outcome 0, and you will never get outcome 1.

That is why the arrows |0\rangle and |1\rangle are “incompatible” or “mutually exclusive”, if you try to measure |0\rangle (in the |0\rangle|1\rangle basis) you will always get 0 and never 1, and on the contrary if you try to measure |1\rangle you will always get 1 and never 0. For any other arrow in the middle, like |V\rangle for example, you can get 0 or 1 with non-zero probability! That’s somehow why we say it is in superposition, it is not completely “incompatible” with either of the two basis arrows, it contains some properties of |0\rangle and some of |1\rangle , it has “both shadows”.

So remember that, while you probably cannot be both dead and alive at the same time, an arrow might be able to be somewhere in between!

Jeremy2Jérémy Ribeiro is a theorist at QuTech. He specialises in quantum cryptography: the use of quantum principles to design secure protocols for communication and other cryptographic tasks. In his free time (and sometimes during work hours) he enjoys practicing his Yo-yo skills and talking about open source software and undecidable problems.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.