How to make artificial atoms out of electrical circuits

Difficulty    

 

Part 1: Superconductivity saves the day

By Christian Dickel

In a series of blog posts, I want to introduce the bread and butter of the DiCarlo group within QuTech: Studying quantum effects in superconducting electrical circuits. In the title, I suggest that we are building artificial atoms, but that depends on the definition of “atomness”. I hope to give the reader some insight to judge for him or herself whether our work comes short of this or goes beyond it. Also, I want to convey some of the amazement I feel working on a subject that brings together electrical engineering, superconductivity, and quantum mechanics in its purest form.

This blog post is rather long, but I have marked non-essential sections with a *.

Continue reading How to make artificial atoms out of electrical circuits

Playing the Quantum Ballgame

Difficulty    

By Jonas Helsen

One of the things that is often repeated about quantum computing is the idea that a quantum computer is somehow more powerful than regular computers because, when considering a problem it can “try all possible solutions at once”. Let’s get this out of the way first and say that this is not exactly the case. While we would very much love a computer that tries all solutions at once (this would be extremely useful) quantum computers sadly aren’t quite this powerful. Of course, as with all good clichés it does contain a grain of truth. In this blog post I will try to explain in a (sort of) simple way what makes quantum computers more powerful than classical computers.

Continue reading Playing the Quantum Ballgame

Entanglement distillation

Difficulty    

by Filip Rozpedek

Entanglement, is it always pure?

You have probably already heard about entanglement. Entanglement is this fascinating phenomenon, in which two distant objects can manifest correlations, even if they are far far away from each other. You may have also heard that remote entanglement is a necessary ingredient for many quantum information processing tasks. For example, in quantum cryptography, two people who hold entangled particles can use those correlations to obtain shared secret keys, whose security is guaranteed by the laws of quantum mechanics. Today, we will not discuss how to use remote entanglement, but rather, what to do if our entanglement is too weak.

Unfortunately, fully entangled states which are perfectly correlated are a great idealization and from an experimental perspective almost impossible to create. In general, there can be many reasons for this, e.g. our experimental equipment isn’t perfect or we cannot maintain our quantum system long enough. All those things combined lead to various forms of contamination of the entanglement. That is, the correlations become weaker and completely diluted in a mixture of various other quantum states.
So what do we do with those so-called “partially entangled states”? Let us say that two parties working at QuTech, whom we call Alice and Bob, share those partially entangled states and would like to use them to generate shared secret keys. Let us also say that their experimental setup allows them to produce partially entangled states very fast, but the amount of entanglement in each of them is insufficient to generate shared secret keys. It is known from Quantum theory that it is not possible to increase the amount of entanglement in a given quantum state by only performing operations on the entangled particles locally and exchanging classical messages. It seems that there is no choice for Alice and Bob, but to go home without a key.

Continue reading Entanglement distillation

Media Misconceptions: Quantum versus Classical Computers

Difficulty    

by Christian Dickel

It is an honor to write the first blog post here and being conscious of that certainly influenced what I was going to write about. They say write what you know, but this is a blog so I’m going to write what I think. The blog will hopefully be a place for opinions and discussions. So I’ll begin with a question:

Do physics institutes need blogs? Certainly it is a neat additional way to communicate with other scientists, especially to share more provocative thoughts and give people a chance to discuss in the comments. But science is kind of a gated community and a blog is a nice way to open it more. For communication with the rest of society, journalists often come in whenever some piece of science has an air of general interest. But especially in a field receiving a lot of interest and a lot of funding from the public, we should try to explain what we do directly to anybody who is interested enough to end up on our website. A blog is a chance for us to share and discuss our perspective on the story of quantum computing as it is being written.

Quantum computers and the media

Christian Dickel
Christian Dickel

There are news article on quantum computing almost weekly somewhere on the internet and one can use them to follow the story of the quantum computer. But the news has a certain inertia and a need to fit complicated arguments into a single sentence or paragraph. Some of the one-liners are productive simplifications, but they can also be misleading. Exploring all the misconceptions about quantum computing requires more than one blog article. I considered going through the list found here and fact-checking it, but this blog article would not have been very serious then. I thought it better for the first blog article to be a link from the past to today and focus on a single aspect that annoys me in the way the quantum computer story is told: I will try to give a more nuanced view on the relationship between the classical and quantum computer. Maybe later there will be more blog articles on other common misconceptions about quantum computers.

Continue reading Media Misconceptions: Quantum versus Classical Computers