Two kinds of physicists

Difficulty    

by Jonas Helsen

When people talk about physics, and in particular the human side of it, the ‘doing’ physics, they will usually point out that there exist two main forms of physicists. There are experimentalists, who spend their days gathering data in labs or tinkering with huge particle accelerators. These physicists, although rarely actually wearing white lab coats – at least in my experience – seem to be the closest to the pop culture stereotype of a scientist: wedding a strong analytical spirit to a practical, do-it-yourself mindset and a work ethic that often borders on obsession. They form the majority of physics practitioners and often speak with mild disdain about the ‘other’ type of physicist: the theorist. Theorists differ from experimentalist in that they mostly do, well, theory. Their days are usually not spent tinkering with equipment or analysing data but rather studying literature and diving into the complicated mathematics needed to describe modern physics. They often eschew the practical in favour of a generalist, axiomatic mindset; using as few assumptions as possible to describe the largest possible piece of the physical puzzle.

Jonas_Helsen
Jonas Helsen

Throughout history these two strands of physics were usually not distinct professions but merely reflected the interests of a singular physicist. Even Newton, the prototype of a theoretical physicist, regularly performed experiments using prisms and even built one of the earliest reflecting telescopes. In my understanding of the history of physics these two strands of physicist started splitting into true professions in the late 19th century and early 20th century in response to the ever growing complexity of physics. Over time they grew further apart until the present day where among many theorists it is considered a point of pride to have never performed any experiments at all. Entire careers can be wholly devoted to the understanding of ‘physical theories’ that are decades away from being subjected to experimental verification. On the other hand, as the scale and complexity of experiments has grown, many experimentalists find themselves spending most of their time not doing physics but the cutting edge engineering work necessary to perform modern experiments to begin with. This has lead both groups to develop language and practices which differ immensely and can lead to almost Babylonic misunderstandings in the occasions where theorists and experimentalists do meet.

Continue reading Two kinds of physicists

Welcome to the QuTech blog!

Difficulty    

by Stephanie Wehner and Leo Kouwenhoven

Writing a blog post about quantum information and taking a picture of a rapidly approaching wave are almost equally ephemeral – a fleeting impression of an exciting development that has long moved onwards once the ink is dry. In the past two years, QuTech has grown to over 140 people working towards a quantum computer and quantum internet – or if you put the two together, a quantum cloud. We have celebrated scientific successes such as the first loophole free Bell test, and seen significant developments when Intel decided to enter the quantum domain, joining Microsoft as an industrial partner of QuTech.

Experimentalist Stephanie Wehner
Stephanie Wehner

More interesting, however, is undoubtedly the road ahead. Evidently, it is an intriguing prospect that already relatively few qubit quantum computing devices may solve useful problems faster than any classical machine. For us in the field, however, they would also invariably transform the landscape of quantum technology research we are accustomed to – both for theoretical and experimental research. An availability of few qubit devices promises the novel opportunity to develop new applications and algorithms by a heuristic approach often taken in classical computing – simply because we all have a classical computer on our desk to try them out. From an experimental perspective, we may see a divergence of experiments that aim to probe physics but work with only a handful of qubits, and the more engineering oriented aspect of designing larger scale computing technology. All the while, quantum information has made a sweeping entrance into many other areas of physics – offering the perspective of information as a powerful new way to decipher nature.

To advance quantum technologies, the European commission has recently established a 1bn euro flagship. Whether intentionally or not, the video provided for the flagship highlights the situation our field may find itself in. Feeling the rapidly approaching wave the question will be whether we do – as the surfer – fully commit to these possibilities by taking the chance to pop up on the surfboard. Or, whether we will keep hanging onto the well accustomed board and thus invariably wipe out. Success in quantum technologies does indeed require all the commitment we can muster, since realizing a quantum computer is incredibly challenging. Only time will tell whether we will be able to overcome all obstacles, but as with all great endeavours the only path lies forward.

Theorist Leo Kouwenhoven
Leo Kouwenhoven

Initiated by our excellent blog editorial team, we hope this blog may allow you to take part in some of these exciting developments. Written by all members of QuTech, it will feature a diverse set of posts ranging from ongoing research, people at QuTech, to – hopefully – easier explanations of what all this quantum stuff is actually about.

Sometimes, the blog may also give you a glimpse into what these scientists – like the theorist and experimentalist pictured here – are up to all day.

See you soon at the QuTech Blog. Enjoy!