How to make artificial atoms out of electrical circuits – Part II: Circuit quantum electrodynamics and the transmon

Difficulty    

by Christian Dickel

There are different kinds of scientific papers. Some are like James Joyce’s Ulysses – you really want to read them but you have never made it through. There are the English classics – they are timeless and awe-inspiring. Like Shakespeare, some papers have changed the english language and, for example, teleported the wrong ideas into the heads of numerous journalists. In my group, we have a Harry Potter paper that we read again and again and keep discovering new insights. This is Jens Koch et al.’s 2007 classic “Charge insensitive qubit design derived from the Cooper pair box”, which introduced the transmon qubit.

Continue reading How to make artificial atoms out of electrical circuits – Part II: Circuit quantum electrodynamics and the transmon

Can you tell your grandma the weather using only entanglement?

Difficulty    

by Jérémy Ribeiro

Entanglement may seem mysterious. It permits us to have correlations between two separate systems that are arbitrarily far from each other. Moreover these correlations are stronger than any (non causal) classical correlation we can think of. In some ways it looks like the two quantum systems can communicate between each other. This is why some people think that it might be possible to use it to devise an instantaneous communication system. I will try here to give you an intuition as to why this is not possible. But before we see why using only entanglement does not permit you to communicate, we have to understand what we really mean by ‘communicate’.

Continue reading Can you tell your grandma the weather using only entanglement?

Entanglement distillation

Difficulty    

by Filip Rozpedek

Entanglement, is it always pure?

You have probably already heard about entanglement. Entanglement is this fascinating phenomenon, in which two distant objects can manifest correlations, even if they are far far away from each other. You may have also heard that remote entanglement is a necessary ingredient for many quantum information processing tasks. For example, in quantum cryptography, two people who hold entangled particles can use those correlations to obtain shared secret keys, whose security is guaranteed by the laws of quantum mechanics. Today, we will not discuss how to use remote entanglement, but rather, what to do if our entanglement is too weak.

Unfortunately, fully entangled states which are perfectly correlated are a great idealization and from an experimental perspective almost impossible to create. In general, there can be many reasons for this, e.g. our experimental equipment isn’t perfect or we cannot maintain our quantum system long enough. All those things combined lead to various forms of contamination of the entanglement. That is, the correlations become weaker and completely diluted in a mixture of various other quantum states.
So what do we do with those so-called “partially entangled states”? Let us say that two parties working at QuTech, whom we call Alice and Bob, share those partially entangled states and would like to use them to generate shared secret keys. Let us also say that their experimental setup allows them to produce partially entangled states very fast, but the amount of entanglement in each of them is insufficient to generate shared secret keys. It is known from Quantum theory that it is not possible to increase the amount of entanglement in a given quantum state by only performing operations on the entangled particles locally and exchanging classical messages. It seems that there is no choice for Alice and Bob, but to go home without a key.

Continue reading Entanglement distillation

Quantum Teleportation Explained

Difficulty    

by Jérémy Ribeiro

Have you ever dreamt about teleportation? You wonder if it is possible, or if we can use it to travel faster than light, or at least to communicate instantaneously. Then you are at the good place. Here I will explain what quantum teleportation is. Behind this very attractive name that reminds us of science fiction, a communication protocol is hidden which uses the mysterious quantum mechanics.

Why do I talk about quantum teleportation ?

I wanted to write about this protocol because we hear a lot about it and a lot of information and explanations can be found about it. But sometimes those are partially wrong, or are a complete nonsense. For example we can read that quantum teleportation is an instantaneous transfer of information at a distance which respects special relativity… Well this is a contradiction.

These misconceptions of the protocol are not surprising since it relies on one of the most ununderstandable and less well understood phenomenon of quantum mechanics: the famous entanglement.

That’s why I will try to clarify what this notorious quantum teleportation actually is. For that I will have to introduce a little bit of quantum mechanics. Therefore there will be some mathematical expressions, but I’ll guide you through it to make you understand what is going on. It shouldn’t be too difficult since you should have already seen all the mathematical concepts in high school (vectors), and I think it is worth it and permits to really understand what quantum teleportation is.

So what is that quantum teleportation ?

The first thing to understand is that we only teleport a quantum state (we will call it \Phi), and not a particle nor any other kind of matter. Only information is transmitted from one place to another. So somehow we will scan the physical system in the first place (which will destroy the state), send the information (by phone, internet or any other way of communication) to an other place and there reconstruct the state. But to do that there are some obstacles. The main obstacle the “scanning phase” is not trivial since we cannot (by the law of quantum mechanics) get all the
information on a state by measuring it, as I will explain later, but only partial information. To overcome that we will need to use a correlated state which will somehow compensate the lack of information.

Continue reading Quantum Teleportation Explained